\part{Solutions} \chapter*{Functions} \section*{Definition and examples of functions} % \noindent\begin{tcolorbox}[colback=red!5!white,colframe=red!75!black] \subsection*{Lösung 1} \label{FunctionsAnswer1}The domain is $\mathbb{R}$, because we can plug in any real number into a polynomial. The range is $\mathbb{R}$, which we see by noting that this is a cubic function, so as $x \rightarrow-\infty, f(x) \rightarrow-\infty$, and as $x \rightarrow \infty$, $f(x) \rightarrow \infty$ %\end{tcolorbox} \subsection*{Lösung 2} % \noindent\fbox{% % \parbox{\textwidth}{ \label{FunctionsAnswer2} For $\sin$ and cos: domain is $\mathbb{R}$; range is $[-1,1]$. For tan, the domain is $\left\{x \in \mathbb{R}: x \neq \frac{\pi}{2}+k \pi\right\}$; range is $\mathbb{R}$. % }} % \subsection*{Lösung 3} % \noindent\fbox{% % \parbox{\textwidth}{ \label{FunctionsAnswer3} Domain is $\mathbb{R}$; range is $(0, \infty)$. % }} \subsection*{Lösung 4} % \noindent\begin{tcolorbox}[colback=red!5!white,colframe=red!75!black] \label{FunctionsAnswer4}Domain is $(0, \infty)$; range is $\mathbb{R}$. Notice how the domain and range of the exponential relate to the domain and range of the natural logarithm. % \end{tcolorbox} \subsection*{Lösung 5} % \noindent\begin{tcolorbox}[colback=red!5!white,colframe=red!75!black] \label{FunctionsAnswer5}$\sin ^{-1}$ is not a function, because one input has many outputs. For example, $\sin ^{-1}(0)=0, \pi, 2 \pi, \ldots$. By restricting the range of $\sin ^{-1}$ to $\left\lfloor-\frac{\pi}{2}, \frac{\pi}{2}\right\rfloor$, one gets the function arcsin. %\end{tcolorbox} % \section*{Operations on Functions} \subsection*{COMPOSITION} \subsubsection*{Lösung 1} \label{FunctionsAnswer6}We find that $$ \begin{aligned} f \circ f(x) & =f(f(x)) \\ & =f\left(\frac{1}{x+1}\right) \\ & =\frac{1}{1 /(x+1)+1} \\ & =\frac{x+1}{1+x+1} \\ & =\frac{x+1}{x+2} . \end{aligned} $$ \section*{Classes of Functions} % \subsection{POLYNOMIALS} % \subsection{RATIONAL FUNCTIONS} \subsection*{POWERS} \subsubsection*{Lösung 1} \label{FunctionsAnswer7}$x^0=1$ \subsubsection*{Lösung 2} \label{FunctionsAnswer8}Recall a fractional power denotes root. For example, $x^{\frac{1}{2}}=\sqrt{x}$. The negative sign in the exponent means that we take the reciprocal. So, $x^{-\frac{1}{2}}=\frac{1}{\sqrt{x}}$. \subsubsection*{Lösung 3} \label{FunctionsAnswer9}One can rewrite this as $\left(x^{22}\right)^{1 / 7}$. That means we take $x$ to the 22 nd power and then take the 7 th root of the result. \subsection*{Additional Examples} \subsubsection*{Example 1} \label{FunctionsAnswer10}Note that the square root is only defined when its input is non-negative. Also, the denominator in a rational function cannot be 0 . So we find that this function is well-defined if and only if $x^2-3 x+2>0$. Factoring gives $$ (x-2)(x-1)>0 \text {. } $$ By plotting the points $x=1$ and $x=2$ (where the denominator equals 0 ) and testing points between them, one finds that $x^2-3 x+2>0$ when $x<1$ or $x>2$ : \begin{figure} \centering \includegraphics[width=0.7\linewidth]{PointChecking} %\caption{} \label{fig:pointchecking} \end{figure} So the domain of $f$ is $x<1$ or $20$. Factoring gives $$ x\left(x^2-6 x+8\right)=x(x-2)(x-4)>0 $$ As in the above example, plotting the points where this equals 0 and then testing points, we find that the domain is $00$. Factoring gives % $$ % (x-2)(x-1)>0 \text {. } % $$ % % By plotting the points $x=1$ and $x=2$ (where the denominator equals 0 ) and testing points between them, one finds that $x^2-3 x+2>0$ when $x<1$ or $x>2$ : % % \begin{figure}[h] % \centering % \includegraphics[width=0.5\linewidth]{Upenn004} % % \caption{} % \label{fig:upenn004} % \end{figure} % % % So the domain of $f$ is $x<1$ or $20$. Factoring gives % $$ % x\left(x^2-6 x+8\right)=x(x-2)(x-4)>0 % $$ % % As in the above example, plotting the points where this equals 0 and then testing points, we find that the domain is $0