Exponentials bearbeitet, rotes Bullet für item
This commit is contained in:
BIN
ExponentialApproximants.png
Normal file
BIN
ExponentialApproximants.png
Normal file
Binary file not shown.
|
After Width: | Height: | Size: 27 KiB |
@@ -92,14 +92,14 @@ $$
|
||||
These formulas should be memorized, both in their long polynomial form and their more concise summation notation form.
|
||||
|
||||
\subsection*{Example}
|
||||
Use Euler's formula to show that $e^{i \pi}=-1$. Answer
|
||||
Use Euler's formula to show that $e^{i \pi}=-1$. \hyperref[ExponentialsAnswer1]{Answer}
|
||||
\subsection*{Example}
|
||||
Compute $1-\frac{\pi^2}{2!}+\frac{\pi^4}{4!}-\cdots$. Answer
|
||||
Compute $1-\frac{\pi^2}{2!}+\frac{\pi^4}{4!}-\cdots$. \hyperref[ExponentialsAnswer2]{Answer}
|
||||
\subsection*{Example}
|
||||
Check that taking the derivative of the long polynomial for $\sin x$ gives the long polynomial for $\cos x$ (hence, verify that $\frac{d}{d x} \sin x=\cos x$ ). Answer
|
||||
Check that taking the derivative of the long polynomial for $\sin x$ gives the long polynomial for $\cos x$ (hence, verify that $\frac{d}{d x} \sin x=\cos x$ ). \hyperref[ExponentialsAnswer3]{Answer}
|
||||
|
||||
\subsection*{Example}
|
||||
Show that the long polynomial for $e^x$ satisfies the first property above, namely $e^{x+y}=e^x e^y$. Hint: start with the long polynomials for $e^x$ and $e^y$ and multiply these together, and carefully collect like terms to show it equals the long polynomial for $e^{x+y}$. Answer
|
||||
Show that the long polynomial for $e^x$ satisfies the first property above, namely $e^{x+y}=e^x e^y$. Hint: start with the long polynomials for $e^x$ and $e^y$ and multiply these together, and carefully collect like terms to show it equals the long polynomial for $e^{x+y}$. \hyperref[ExponentialsAnswer4]{Answer}
|
||||
|
||||
|
||||
\section{More on the long polynomial}
|
||||
@@ -114,4 +114,27 @@ $$
|
||||
\end{aligned}
|
||||
$$
|
||||
|
||||
Each polynomial in the sequence is, in a sense, the best approximation possible of that degree. Put another way, taking the first several terms of the long polynomial gives a good polynomial approximation of the function. The more terms included, the better the approximation. This is how calculators compute the exponential function (without having to add up infinitely many things).
|
||||
Each polynomial in the sequence is, in a sense, the best approximation possible of that degree. Put another way, taking the first several terms of the long polynomial gives a good polynomial approximation of the function. The more terms included, the better the approximation. This is how calculators compute the exponential function (without having to add up infinitely many things).
|
||||
|
||||
\begin{figure}[h]
|
||||
\centering
|
||||
\includegraphics[width=0.7\linewidth]{ExponentialApproximants}
|
||||
% \caption{}
|
||||
\label{fig:exponentialapproximants}
|
||||
\end{figure}
|
||||
|
||||
\section{EXERCISES}
|
||||
\begin{itemize}
|
||||
|
||||
\item[\textcolor{red}{\tikzcircle{3pt}}] So, how good of an approximation is a polynomial truncation of $e^{\text {? }}$. Use a calculator to compare how close $e$ is to the linear, quadratic, cubic, quartic, and quintic approximations. How many digits of accuracy do you seem to be gaining with each additional term in the series?
|
||||
\end{itemize}
|
||||
%-
|
||||
%- Now, do the same thing with $1 / e$ by plugging in $x=-1$ into the series. Do you have the same results? Are you surprised?
|
||||
%- Calculate the following sum using what you know:
|
||||
%$$
|
||||
%\sum_{n=0}^{\infty}(-1)^n \frac{(\ln 3)^n}{n!}
|
||||
%$$
|
||||
%- Write out the first four terms of the following series
|
||||
%$$
|
||||
%\sum_{n=0}^{\infty}(-1)^n \frac{\pi^{2 n}}{2^n n!}
|
||||
%$$
|
||||
@@ -91,9 +91,39 @@
|
||||
\chapter*{EXPONENTIALS}
|
||||
\section*{Euler's formula}
|
||||
\subsection*{Answer 1}
|
||||
|
||||
\label{ExponentialsAnswer1}
|
||||
Setting $x=\pi$ in Euler's formula gives $e^{i \pi}=\cos \pi+i \sin \pi=-1$.
|
||||
%
|
||||
|
||||
\subsection*{Answer 2}
|
||||
\label{ExponentialsAnswer2}
|
||||
Note that this is the long polynomial for $\cos x$, evaluated at $x=\pi$. So the value is $\cos \pi=-1$.
|
||||
|
||||
\subsection*{Answer 3}
|
||||
\label{ExponentialsAnswer3}
|
||||
Computing the derivative term by term gives
|
||||
$$
|
||||
\begin{aligned}
|
||||
\frac{d}{d x} \sin (x) & =\frac{d}{d x}\left(x-\frac{x^3}{3!}+\frac{x^5}{5!}-\ldots\right) \\
|
||||
& =1-3 \frac{x^2}{3!}+5 \frac{x^4}{5!}-\ldots \\
|
||||
& =1-\frac{x^2}{2!}+\frac{x^4}{4!}-\ldots
|
||||
\end{aligned}
|
||||
$$
|
||||
which is the long polynomial for $\cos x$, as desired.
|
||||
|
||||
\subsection*{Answer 4}
|
||||
\label{ExponentialsAnswer4}
|
||||
Beginning with $e^x \cdot e^y$, we find
|
||||
$$
|
||||
\begin{aligned}
|
||||
e^x \cdot e^y & =\left(1+x+\frac{x^2}{2!}+\cdots\right)\left(1+y+\frac{y^2}{2!}+\cdots\right) \\
|
||||
& =1+(x+y)+\left(\frac{x^2}{2!}+x y+\frac{y^2}{2!}\right)+\cdots \\
|
||||
& =1+(x+y)+\frac{x^2+2 x y+y^2}{2!}+\cdots \\
|
||||
& =1+(x+y)+\frac{(x+y)^2}{2!}+\cdots,
|
||||
\end{aligned}
|
||||
$$
|
||||
which is the long polynomial for $e^{x+y}$, as desired.
|
||||
|
||||
% \subsection{Euler's Formula}
|
||||
%
|
||||
% \subsection{Additional Examples}
|
||||
|
||||
@@ -28,6 +28,14 @@
|
||||
\setkomafont{disposition}{\normalcolor\bfseries} % alle überschriften fett und serifenlos
|
||||
%\setkomafont{disposition}{\normalcolor}
|
||||
|
||||
|
||||
\usepackage{tikz}
|
||||
|
||||
\newcommand{\tikzcircle}[2][red,fill=red]{\tikz[baseline=-0.5ex]\draw[#1,radius=#2] (0,0) circle ;}%
|
||||
|
||||
|
||||
|
||||
|
||||
\setlength\parindent{0pt}
|
||||
|
||||
\everymath{\displaystyle}
|
||||
|
||||
Reference in New Issue
Block a user