Exponentials bearbeitet, rotes Bullet für item

This commit is contained in:
Sven Riwoldt
2024-06-29 08:27:20 +02:00
parent 99a4986b9e
commit df271f7ebe
5 changed files with 67 additions and 6 deletions

View File

@@ -91,9 +91,39 @@
\chapter*{EXPONENTIALS}
\section*{Euler's formula}
\subsection*{Answer 1}
\label{ExponentialsAnswer1}
Setting $x=\pi$ in Euler's formula gives $e^{i \pi}=\cos \pi+i \sin \pi=-1$.
%
\subsection*{Answer 2}
\label{ExponentialsAnswer2}
Note that this is the long polynomial for $\cos x$, evaluated at $x=\pi$. So the value is $\cos \pi=-1$.
\subsection*{Answer 3}
\label{ExponentialsAnswer3}
Computing the derivative term by term gives
$$
\begin{aligned}
\frac{d}{d x} \sin (x) & =\frac{d}{d x}\left(x-\frac{x^3}{3!}+\frac{x^5}{5!}-\ldots\right) \\
& =1-3 \frac{x^2}{3!}+5 \frac{x^4}{5!}-\ldots \\
& =1-\frac{x^2}{2!}+\frac{x^4}{4!}-\ldots
\end{aligned}
$$
which is the long polynomial for $\cos x$, as desired.
\subsection*{Answer 4}
\label{ExponentialsAnswer4}
Beginning with $e^x \cdot e^y$, we find
$$
\begin{aligned}
e^x \cdot e^y & =\left(1+x+\frac{x^2}{2!}+\cdots\right)\left(1+y+\frac{y^2}{2!}+\cdots\right) \\
& =1+(x+y)+\left(\frac{x^2}{2!}+x y+\frac{y^2}{2!}\right)+\cdots \\
& =1+(x+y)+\frac{x^2+2 x y+y^2}{2!}+\cdots \\
& =1+(x+y)+\frac{(x+y)^2}{2!}+\cdots,
\end{aligned}
$$
which is the long polynomial for $e^{x+y}$, as desired.
% \subsection{Euler's Formula}
%
% \subsection{Additional Examples}