Exponentials bearbeitet, rotes Bullet für item
This commit is contained in:
@@ -91,9 +91,39 @@
|
||||
\chapter*{EXPONENTIALS}
|
||||
\section*{Euler's formula}
|
||||
\subsection*{Answer 1}
|
||||
|
||||
\label{ExponentialsAnswer1}
|
||||
Setting $x=\pi$ in Euler's formula gives $e^{i \pi}=\cos \pi+i \sin \pi=-1$.
|
||||
%
|
||||
|
||||
\subsection*{Answer 2}
|
||||
\label{ExponentialsAnswer2}
|
||||
Note that this is the long polynomial for $\cos x$, evaluated at $x=\pi$. So the value is $\cos \pi=-1$.
|
||||
|
||||
\subsection*{Answer 3}
|
||||
\label{ExponentialsAnswer3}
|
||||
Computing the derivative term by term gives
|
||||
$$
|
||||
\begin{aligned}
|
||||
\frac{d}{d x} \sin (x) & =\frac{d}{d x}\left(x-\frac{x^3}{3!}+\frac{x^5}{5!}-\ldots\right) \\
|
||||
& =1-3 \frac{x^2}{3!}+5 \frac{x^4}{5!}-\ldots \\
|
||||
& =1-\frac{x^2}{2!}+\frac{x^4}{4!}-\ldots
|
||||
\end{aligned}
|
||||
$$
|
||||
which is the long polynomial for $\cos x$, as desired.
|
||||
|
||||
\subsection*{Answer 4}
|
||||
\label{ExponentialsAnswer4}
|
||||
Beginning with $e^x \cdot e^y$, we find
|
||||
$$
|
||||
\begin{aligned}
|
||||
e^x \cdot e^y & =\left(1+x+\frac{x^2}{2!}+\cdots\right)\left(1+y+\frac{y^2}{2!}+\cdots\right) \\
|
||||
& =1+(x+y)+\left(\frac{x^2}{2!}+x y+\frac{y^2}{2!}\right)+\cdots \\
|
||||
& =1+(x+y)+\frac{x^2+2 x y+y^2}{2!}+\cdots \\
|
||||
& =1+(x+y)+\frac{(x+y)^2}{2!}+\cdots,
|
||||
\end{aligned}
|
||||
$$
|
||||
which is the long polynomial for $e^{x+y}$, as desired.
|
||||
|
||||
% \subsection{Euler's Formula}
|
||||
%
|
||||
% \subsection{Additional Examples}
|
||||
|
||||
Reference in New Issue
Block a user