Lösungen angepasst
This commit is contained in:
@@ -3,19 +3,19 @@
|
||||
Sei $x=\sum\limits_{k=0}^{\infty}\left( -1\right) ^{k}\frac{1}{k};$ \ $\widetilde{x}= \sum\limits_{k=0}^{4}\left( -1\right) ^{k}\frac{1}{k!}$
|
||||
|
||||
\begin{description}
|
||||
\item[a.] Mit Hilfe von welcher speziellen Funktion l\"{a}\ss t sich $x$ genau beschreiben? Wie? (Tip: 3.3.5)
|
||||
\item[a.] Mit Hilfe von welcher speziellen Funktion läßt sich $x$ genau beschreiben? Wie? (Tip: 3.3.5)
|
||||
|
||||
\item[b.] Berechnen Sie $\widetilde{x}$.
|
||||
\item[b.] Berechnen Sie $\displaystyle \widetilde{x}$.
|
||||
|
||||
\item[c.] Geben Sie einen absoluten H\"{o}chstfehler von $\widetilde{x}$ an.
|
||||
\item[c.] Geben Sie einen absoluten Höchstfehler von $\widetilde{x}$ an.
|
||||
(Tip: 3.2.7)
|
||||
\end{description}
|
||||
|
||||
\subsection{Lösung}
|
||||
\begin{description}
|
||||
\item[a.] $\exp(z)=\sum\limits_{k=0}^{\infty}\frac{1}{k!}z^{k}$ \ $\Longrightarrow$ \ \ $x=\sum\limits_{k=0}^{\infty}\frac{1}{k!}(-1)^{k}=\exp(-1)=\underline{\underline{\frac{1}{e}}}$
|
||||
\item[a.] $\displaystyle \exp(z)=\sum\limits_{k=0}^{\infty}\frac{1}{k!}z^{k}$ \ $\Longrightarrow$ \ \ $x=\sum\limits_{k=0}^{\infty}\frac{1}{k!}(-1)^{k}=\exp(-1)=\underline{\underline{\frac{1}{e}}}$
|
||||
|
||||
\item[b.] $\widetilde{x}=\sum\limits_{k=0}^{4}\frac{1}{k!}(-1)^{k}=\allowbreak 1-1+\frac{1}{2}-\frac{1}{6}+\frac{1}{24}=\frac{12-4+1}{24}=\allowbreak\frac{9}{24}=\frac{3}{8}=\allowbreak\underline{\underline{0.375}}\,$
|
||||
\item[b.] $\displaystyle \widetilde{x}=\sum\limits_{k=0}^{4}\frac{1}{k!}(-1)^{k}=\allowbreak 1-1+\frac{1}{2}-\frac{1}{6}+\frac{1}{24}=\frac{12-4+1}{24}=\allowbreak\frac{9}{24}=\frac{3}{8}=\allowbreak\underline{\underline{0.375}}\,$
|
||||
|
||||
\item[c.] Da die vorliegende Reihe eine alternierende Reihe ist, gilt $|x-\widetilde{x}|\leq\frac{1}{5!}=\frac{1}{120}=8.\overline{3}\cdot 10^{-3}$. Damit ist $\underline{\underline{\alpha_x=8.\overline{3}\cdot 10^{-3}}}$ ein absoluter Höchstfehler von $\widetilde{x}$.
|
||||
\item[c.] Da die vorliegende Reihe eine alternierende Reihe ist, gilt $\displaystyle |x-\widetilde{x}|\leq\frac{1}{5!}=\frac{1}{120}=8.\overline{3}\cdot 10^{-3}$. Damit ist $\underline{\underline{\alpha_x=8.\overline{3}\cdot 10^{-3}}}$ ein absoluter Höchstfehler von $\widetilde{x}$.
|
||||
\end{description}
|
||||
@@ -1,9 +1,9 @@
|
||||
\section{Aufgabe 125}
|
||||
|
||||
Gegeben sei das eindeutig lösbare lineare Gleichungssystem $\ A\cdot
|
||||
Gegeben sei das eindeutig lösbare lineare Gleichungssystem $\displaystyle A\cdot
|
||||
\overrightarrow{x}=\overrightarrow{b}$ mit
|
||||
|
||||
$A=\left(
|
||||
$\displaystyle A=\left(
|
||||
\begin{array}
|
||||
[c]{cccccc}%
|
||||
4 & -1 & 0 & -1 & 0 & 0\\
|
||||
@@ -26,48 +26,48 @@ $A=\left(
|
||||
\right) $
|
||||
|
||||
\begin{itemize}
|
||||
\item[a.] Sei $\overrightarrow{x}^{\left( 0\right) }=\overrightarrow{0}$.
|
||||
Berechnen Sie die Näherungslösung $\overrightarrow{x}^{\left(
|
||||
\item[a.] Sei $\displaystyle \overrightarrow{x}^{\left( 0\right) }=\overrightarrow{0}$.
|
||||
Berechnen Sie die Näherungslösung $\displaystyle \overrightarrow{x}^{\left(
|
||||
3\right) }$ des Systems, die man nach 3 Schritten des
|
||||
Gesamtschrittverfahrens erhält.
|
||||
|
||||
\item[b.] Zeigen Sie, daß das Gesamtschrittverfahren konvergiert.
|
||||
|
||||
\item[c.] Führen Sie eine Apeoteriori-Fehlerabschätzung für
|
||||
$\overrightarrow{x}^{\left( 3\right) }$\ durch.
|
||||
$\displaystyle \overrightarrow{x}^{\left( 3\right) }$\ durch.
|
||||
|
||||
\item[d.] Führen Sie eine Apriori-Fehlerabschätzung für
|
||||
$\overrightarrow{x}^{\left( 10\right) }$ durch.
|
||||
$\displaystyle \overrightarrow{x}^{\left( 10\right) }$ durch.
|
||||
\end{itemize}
|
||||
|
||||
\subsection{Lösung}
|
||||
|
||||
\begin{itemize}
|
||||
\item[a.] Rechenvorschriften:\newline$x_{1}^{\left( Z\right) }=\frac{1}%
|
||||
\item[a.] Rechenvorschriften:\newline$\displaystyle x_{1}^{\left( Z\right) }=\frac{1}%
|
||||
{4}\left( 2+x_{2}^{\left( Z-1\right) }+x_{4}^{\left( Z-1\right) }\right)
|
||||
=\frac{1}{2}+\frac{1}{4}x_{2}^{\left( Z-1\right) }+\frac{1}{4}x_{4}^{\left(
|
||||
Z-1\right) }$\newline$x_{2}^{\left( Z\right) }=\frac{1}{4}\left(
|
||||
Z-1\right) }$\newline$\displaystyle x_{2}^{\left( Z\right) }=\frac{1}{4}\left(
|
||||
1+x_{1}^{\left( Z-1\right) }+x_{3}^{\left( Z-1\right) }+x_{5}^{\left(
|
||||
Z-1\right) }\right) =\frac{1}{4}+\frac{1}{4}x_{1}^{\left( Z-1\right)
|
||||
}+\frac{1}{4}x_{3}^{\left( Z-1\right) }+\frac{1}{4}x_{5}^{\left(
|
||||
Z-1\right) }$\newline$x_{3}^{\left( Z\right) }=\frac{1}{4}\left(
|
||||
Z-1\right) }$\newline$\displaystyle x_{3}^{\left( Z\right) }=\frac{1}{4}\left(
|
||||
2+x_{2}^{\left( Z-1\right) }+x_{6}^{\left( Z-1\right) }\right) =\frac
|
||||
{1}{2}+\frac{1}{4}x_{2}^{\left( Z-1\right) }+\frac{1}{4}x_{6}^{\left(
|
||||
Z-1\right) }$\newline$x_{4}^{\left( Z\right) }=\frac{1}{4}\left(
|
||||
Z-1\right) }$\newline$\displaystyle x_{4}^{\left( Z\right) }=\frac{1}{4}\left(
|
||||
2+x_{1}^{\left( Z-1\right) }+x_{5}^{\left( Z-1\right) }\right) =\frac
|
||||
{1}{2}+\frac{1}{4}x_{1}^{\left( Z-1\right) }+\frac{1}{4}x_{5}^{\left(
|
||||
Z-1\right) }$\newline$x_{5}^{\left( Z\right) }=\frac{1}{4}\left(
|
||||
Z-1\right) }$\newline$\displaystyle x_{5}^{\left( Z\right) }=\frac{1}{4}\left(
|
||||
1+x_{2}^{\left( Z-1\right) }+x_{4}^{\left( Z-1\right) }+x_{6}^{\left(
|
||||
Z-1\right) }\right) =\frac{1}{4}+\frac{1}{4}x_{2}^{\left( Z-1\right)
|
||||
}+\frac{1}{4}x_{4}^{\left( Z-1\right) }+\frac{1}{4}x_{6}^{\left(
|
||||
Z-1\right) }$\newline$x_{6}^{\left( Z\right) }=\frac{1}{4}\left(
|
||||
Z-1\right) }$\newline$\displaystyle x_{6}^{\left( Z\right) }=\frac{1}{4}\left(
|
||||
2+x_{3}^{\left( Z-1\right) }+x_{5}^{\left( Z-1\right) }\right) =\frac
|
||||
{1}{2}+\frac{1}{4}x_{3}^{\left( Z-1\right) }+\frac{1}{4}x_{5}^{\left(
|
||||
Z-1\right) }$\newline\newline%
|
||||
\begin{tabular}
|
||||
[c]{l||llllll}%
|
||||
z & $x_{1}^{\left( Z\right) }$ & $x_{2}^{\left( Z\right) }$ &
|
||||
$x_{3}^{\left( Z\right) }$ & $x_{4}^{\left( Z\right) }$ & $x_{5}^{\left(
|
||||
z & $\displaystyle x_{1}^{\left( Z\right) }$ & $\displaystyle x_{2}^{\left( Z\right) }$ &
|
||||
$x_{3}^{\left( Z\right) }$ & $\displaystyle x_{4}^{\left( Z\right) }$ & $\displaystyle x_{5}^{\left(
|
||||
Z\right) }$ & $x_{6}^{\left( Z\right) }$\\\hline\hline
|
||||
1 & $0.5$ & $0.25$ & $0.5$ & $0.5$ & $0.25$ & $0.5$\\
|
||||
2 & $0.6875$ & $0.5625$ & $0.6875$ & $0.6875$ & $0.5625$ & $0.6875$\\
|
||||
|
||||
Reference in New Issue
Block a user